Saturday, November 14, 2009

Mesothelioma cause


The only recognized cause of mesothelioma is exposure to asbestos, though other factors such as smoking can make the disease more or less likely in some individuals. Industrial laborers were widely subjected to asbestos exposure on the job, as the material was widely used throughout the 20th century. Few of these workers knew they were being exposed to asbestos, however, despite the fact that many manufacturers were aware the material was hazardous. In most cases, mesothelioma symptoms will not appear in an individual exposed to asbestos until many years after the exposure has occurred. Those who believe they may have been exposed to asbestos should fill out our form to receive a free mesothelioma information packet, detailing treatment options, emerging therapies, and jobsite exposure information.
The mesothelium is a target of the toxic and carcinogenic effects of asbestos fibers. Fibers greater than 8 mu in length and less than 0.25 mu in diameter have been found to be highly tumorigenic in rodents, while shorter asbestos fibers or spherical mineral particles have not been shown to produce mesotheliomas. For investigation of early mesothelial reactions associated with the development of mesotheliomas, C57BL/6 mice were given intraperitoneal injections of 200 micrograms of short or long crocidolite asbestos fibers, toxic silica particles, or nontoxic titanium dioxide particles. At intervals between 3 hours and 21 days after a single injection, the mesothelial surface of the diaphragm was examined by stereomicroscopy, scanning electron microscopy, and autoradiography. Within 6 hours after injection of asbestos fibers, mesothelial cells in the lacunar regions of the diaphragm retracted opening stomata 10.7 +/- 2.3 mu in diameter leading to the submesothelial lymphatic plexus. Short asbestos fibers (90.6% less than or equal to 2 mu in length), silica, or titanium dioxide particles (less than or equal to 5 mu in diameter) were cleared through these stomata without provoking an inflammatory reaction or mesothelial injury. In contrast, long asbestos fibers (60.3% greater than or equal to 2 mu in length) were trapped at the lymphatic stomata in the lacunar regions on the peritoneal surface of the diaphragm. At these sites, an intense inflammatory reaction developed with accumulation of activated macrophages and a 5.5-fold increase in albumin recovered in the peritoneal lavage fluid after 3 days. As early as 12 hours after injection of long asbestos fibers, the adjacent mesothelial cells were unable to exclude trypan blue and lost their surface microvilli, developed blebs, and detached. Recovery of lactate dehydrogenase activity in the peritoneal lavage fluid was increased 5.8-fold after 3 days and returned to normal levels after 14 days. Regenerating mesothelial cells appeared at the periphery of asbestos fiber clusters 3 days after injection. Maximal incorporation of 3H-thymidine by mesothelial cells occurred after 7 days, followed by partial restoration of the mesothelial lining after 14-21 days. As late as 6 months after a single injection of crocidolite asbestos fibers, clusters of fibers remained in the lacunar regions, partially covered by mesothelium but surrounded by macrophages and regenerating mesothelial cells. The anatomic distribution and size of lymphatic stomata on the peritoneal surface of the diaphragm account for the selective accumulation of long asbestos fibers in these regions

No comments:

Post a Comment